
Application-Level
Consensus
March 2017

2

Application-level consensus

This article explores the benefits of using a consensus algorithm, such as Raft, to
build clustered services. The core of this type of system is deterministic execution,
replicated consensus log, and snapshotting of state to avoid replay from the
beginning of time. Such a consensus approach offers simplicity, debug-ability, fault
tolerance and scalability.

Years ago I came across a video in which Martin Thompson and Michael Barker
discuss the architecture they devised at LMAX to build their core FX matching
engine. You might have heard about this project or about the Disruptor they open-
sourced some time later.

The idea of an “application-level consensus” (for want of a better phrase) that I
explore in this article really resonated with me - and at Adaptive we’ve enjoyed huge
benefits since we first started exploring its potential in 2015. In 2016, we were able
to deploy it in the design and implementation of two trading systems, including a
financial exchange.

What were the problems for LMAX?

LMAX is a financial exchange for FX (foreign-exchange), commodities and indices
that processes buy and sell orders from clients in real time. FX is a very volatile
market so the exchange needs to process a large quantity of orders at very low
latencies (sub-millisecond). The core system in the exchange is the matching
engine, responsible for organizing client orders in orders books and matching
them. A matching engine is by definition stateful: it holds client orders until they get
matched or cancelled.

The challenge with such systems is that they are highly contended and don’t suit
sharding for parallelism or throughput: for instance, EUR/USD (euro vs US dollar)
is in itself very volatile and all the orders for this currency pair need to be managed
in a single order book: you can’t really shard this problem so how do you solve it,
especially when you have to consider high availability as well?

Traditionally, most systems (other than exchanges) try to be stateless at the compute
level and hold the state in some cache or database, but this design doesn’t cut it
when throughput is that high and latency requirements so low.

https://www.infoq.com/presentations/LMAX
http://martinfowler.com/articles/lmax.html
https://github.com/LMAX-Exchange/disruptor
https://en.m.wikipedia.org/wiki/Shard_(database_architecture)

3

What model solved it?

The team at LMAX tried the highly contended database approach and various others,
including SEDA, the actor model and others. Then they tried an idea dating back to
the seventies and eighties: state machine replication: apply the same sequence of
messages to state machines distributed on different nodes of a network and they
will stay in sync, in the same state - and that’s guaranteed, because state machines
are deterministic.

So this is the overall idea: the matching engine logic (business logic) is written
following some simple rules, which ensures determinism. Then this code is deployed
on several nodes in a network and the same sequence of messages (buy, sell,
cancel orders, etc) is applied to all nodes. At this stage you might be wondering how
you can build this sequence: orders are coming from different places (UIs, APIs, etc)
so there isn’t really a “single sequence” available out of the box.

This is how you do it:

1.	 Place an algorithm to elect one of the nodes leader.
2.	 The leader processes all the incoming messages and sequences them (clients

of the cluster always talk to the leader).
3.	 The leader replicates the sequence to follower nodes.
4.	 Followers acknowledge once they have received the message.
5.	 Once the leader has received acks from a quorum of the nodes in the cluster, the

message is marked committed and is ready to be processed by the business
logic.

6.	 The leader also notifies the followers that the message has been committed.
7.	 Followers can now apply it to their own state machine (business logic).

That’s what the happy path looks like.

For the system to be highly available, things are more complex and there are quite
a few rules to follow to guarantee that the sequence applied to all the nodes is the
same.

https://en.m.wikipedia.org/wiki/Staged_event-driven_architecture
https://en.m.wikipedia.org/wiki/Actor_model
https://en.m.wikipedia.org/wiki/State_machine_replication

4

Consensus algorithms

If you’ve heard about consensus algorithms such as Paxos or Raft, what you’ve just
read about LMAX must sound quite familiar. There’s a good reason for that: we’re
talking about the same thing. LMAX didn’t use Raft: the paper wasn’t yet published
at the time.

Consensus algorithms are traditionally used to build distributed databases or
distributed coordination systems (Chubby, Zookeeper, Etcd, Consul, etc). What’s
interesting in the LMAX case is that they did not use the consensus algorithm at
the database level but at the application level. The engineering effort and the
R&D involved in designing a distributed database and an application are generally
fundamentally different and I don’t think many have tried to build an application
using a consensus algo directly in its service layer.

Consensus algorithms solve a hard problem in distributed systems: they guarantee
that a set of nodes will agree and replicate the same state, even in the event of a fault:
a node failure or network partition. Algorithms such as Raft guarantee linearizability
to the clients of the cluster (the C of the CAP theorem). They are also fault-tolerant
but a majority of nodes need to be available for the cluster to be available: those
systems favour consistency (the C of CAP) over availability (the A of CAP).

Benefits for developing applications

What are the benefits, when developing applications, of using the consensus algo
at the database level?

Simplicity

I think that what surprised me the most when I implemented the architecture for the
first time was how simple it is. Once the Raft clustering infrastructure is in place,
implementing the state machine (deterministic business logic) is quite straightforward
and certainly much simpler than what I’ve seen with other approaches. I hadn’t
seen another design before with such a clean separation of concerns between
infrastructure, the Raft consensus module, and the business logic.

It’s a great environment to apply DDD. Our exchange business logic code is free of
any framework or technical infrastructure: simple plain old objects, data structures
and algorithms, all running on one thread. The exchange we’ve built implements
some quite advanced credit management logic and different complex market
models. And, to be honest, I couldn’t think of any other design which would have
allowed us to meet the client functional requirements and the high-availability
targets: certainly not with such a quick time to market.

https://en.m.wikipedia.org/wiki/Consensus_(computer_science)
https://en.m.wikipedia.org/wiki/Paxos_(computer_science)
https://raft.github.io
https://research.google.com/archive/chubby.html
https://zookeeper.apache.org
https://github.com/coreos/etcd
https://www.consul.io/intro/getting-started/kv.html
https://aphyr.com/posts/313-strong-consistency-models
https://en.m.wikipedia.org/wiki/CAP_theorem
https://en.m.wikipedia.org/wiki/Domain-driven_design

5

Consistency

A very significant advantage of this architecture is that you have the guarantee
that the state in your business logic is consistent between nodes. In a “traditional”
system, this is what processing a transaction looks like:

1.	 Receive a message from a client.
2.	 Load the corresponding data from some store (database, cache, etc).
3.	 Process the message, applying some logic on the data and take a decision.
4.	 Try to commit the new data to the consistent store - but since we’re in a

distributed system and somebody else (another node, thread, etc) might have
changed the data in the meantime, we need some form of optimistic locking
or CAS (compare and swap) operation on the database to make sure we don’t
overwrite the data of the other user.

5.	 If the CAS fails, we have to load the data again and retry.

Contrast the above with what we have to do when we are “inside” a consistent
system:

1.	 Receive a client message.
2.	 Apply the logic on the data we already have in memory (in this style of system

we tend to load upfront most of the data we need at run time - but that’s not a
necessity, it just makes life easier).

3.	 Since the system is consistent, there is nothing to commit back anywhere - the
state is the same in all nodes already.

https://en.m.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.m.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.m.wikipedia.org/wiki/Compare-and-swap

6

This replaces reams of code that needs to handle multiple possible failure scenarios
(failure to read from the store, to write to the store, etc) with simple and straightforward
logic that you apply to state you already have in memory.

Much simpler.

Compute and data in one place

Another consequence of have strong consistency in your service layer is that you can
aggressively load all the data you need in your business logic without being afraid
that it becomes stale or inconsistent between your nodes, as long as you manage
this data within the cluster. This means that processing an inbound message rarely
requires a call to be made to an external system or datastore, which simplifies the
code significantly and yields much better performance than an approach where
compute and data live in different layers of the architecture.

No need for a database

“No need for a database” might sound controversial but ultimately you don’t really
need a database with such a design. Raft, like most consensus algorithms, stores
locally on each node of the cluster all the messages the system has received: this
is called the Raft log.

The log is used in several scenarios:

•	 If the cluster is restarted, the log can be applied to all nodes to put the system
back in the same state - remember that the state machine is deterministic, so
reapplying the same sequence of events will produce the same state.

•	 The log can also be used if one of the nodes of the cluster fails or is restarted:
when it joins it can replay its local log then query the leader to retrieve any
message it might have missed while it was offline.

•	 This property is also invaluable to troubleshoot bugs in your code: if your
systems fails, you just need to retrieve the Raft log and replay locally, with the
same version of the code and with a debugger attached. Do this and you’ll
reproduce the same issue. Anybody who has experience of diagnosing highly
concurrent systems will understand the significant advantage of the approach
I’m describing here.

7

Snapshotting

Since the Raft log could grow indefinitely it is generally combined with snapshotting:
the system takes a snapshot of the application state at a given sequence number in
the Raft log and stores the snapshot on disk. It is then possible to restart the system,
or heal a failed node, by loading the most recent snapshot and then applying all
subsequent messages in the Raft log.

No “ad hoc” resilience

Another radical difference with other architectures is how you approach resilience.
Since the app is built on top of the consensus algorithm, you don’t have to think
about resilience - it’s built in. This removes a huge amount of complexity from the
code. I’ve designed many systems before where I had to carefully consider possible
failures for lots of different flows and how they should be handled. I have no doubt
that I missed quite a few in the process. You don’t have to think about those when
your application is built on top of this kind of consensus algorithm; you can focus
on the business logic instead.

Deterministic business logic

I mentioned earlier that the business logic (state machine) needs to be deterministic:
when you’re applying the same sequence twice to your business logic, the system
must end up in the same state. Practically, this means that the business logic should
never:

•	 Use the system time. If you query the system time you will get a different output
every time. Time needs to be abstracted away in the infrastructure and be part
of the Raft log. Each message is timestamped by the leader and replicated to
followers as part of the log entry. The business logic should always use this
timestamp instead of the system time. “Injecting” time in the system also has
a very nice side effect: it makes time- dependent code very easy to test (you
can fast forward).

•	 Use random numbers without carefully defining the seed. If the system needs
to generate random numbers you need to do this deterministically by seeding
the random generator with the same seed on all nodes. You can, for instance,
use the current message time (not system time!) as a seed.

•	 Use libraries that are not deterministic. This may sound very restrictive but
remember that we’re talking about the business logic of the system here, and
in my experience plain old objects work great.

8

Is it really that easy?

Simple does not mean easy - you should watch this talk from Rich Hickey if you’re
not sure what I mean.

There is a significant effort to put such architecture together the first time and to
adopt or build a consensus implementation; in this article I’ve only scratched the
surface.

But I think this is totally worth the effort. If you have a chance to try this you should,
and the chances are high you won’t want to go back to something else. Some
of the devs who worked at LMAX were saying that Martin broke them with this
architecture: once they’d used it, it was very hard to work on any other system
because it was too painful.

Now I understand why.

Trade-off

Be aware that strong consistency comes with a price: all nodes in the cluster are
participating in the consensus algorithm and are processing every message the
system receives.

If your system doesn’t require strong consistency guarantees you’re better off
looking at a “share nothing” architecture, where each node processes requests
independently. But even in this case, you can consider implementing some of the
ideas we’ve discussed: sequencing messages received by each node, journaling
them and using deterministic business logic so you can replay and easily diagnose
issues.

Also be aware that a consensus algorithm requires a minimum of three nodes: you’ll
need at least three processes, running on three different servers and ideally in three
different data centers (or availability zones, if you run on AWS). Three-node clusters
are resilient to the failure of one node at most: if two nodes fail, the third node won’t
be able to become leader and the cluster will be unavailable until at least one other
node rejoins. Five-node clusters are resilient to the failure of up to two nodes (three
nodes down and the cluster is unavailable).

Also, since messages need to be replicated to a majority of nodes before being
committed, the latency between the nodes will directly affect the maximum
throughput of the cluster. For this reason, nodes are generally deployed in the same
region.

https://www.infoq.com/presentations/Simple-Made-Easy

9

In search of a name

I think this style of architecture is fit for many classes of trading system (real-time
workflows, RFQ engines, OMSs, matching engines, credit-check systems, smart
order routers, hedging engines, etc) but is also very relevant outside of finance and
would yield far better results in some cases than the more traditional application
layer sitting on top of some SQL or NoSQL database. But of course, as with any
architecture, it suits some systems better than others.

David Farley (co-author of Continuous delivery):

“I think that it is more broadly applicable than that. Although the contention
problem at the centre of trading was a driving force in its evolution, the advantages
of simplicity, debug-ability, fault tolerance and scalability mean that it has very
broad applications. I am currently building development tools using the same
basic architecture. Works so far!”

When I talk with others about the architecture we tend to refer to it as the “LMAX
architecture” but I think it deserves its own name. I’ve not found anything better so
far than “application- level consensus” - but if you find a better name, please let me
know.

Final thoughts

Application-level consensus deserves a lot more attention than it’s had so far. It
yields significant benefits and will help to solve complex requirements while keeping
the system simple to reason about and correct. Unfortunately, at this stage the
barrier to entry is still quite high, there is not yet a good place where you can learn
about this architecture end to end, and a lot could be done in terms of infrastructure
to get up and running on a project more quickly. We will do our best in 2017 to close
this gap. In the meantime, if you think this architecture could help for one of your
projects but you aren’t sure where to start, please get in touch!

10

Acknowledgements

I would like to thank the following people who kindly accepted to review this article:
Dave Farley, Martin Thompson, Julian Maynard-Smith, Thomas Pierrain, Matt
Barrett, Shaun Laurens, James Kirkland

Olivier Deheurles

I am a software developer and I’ve been designing and building real-time trading
systems for more than ten years. I worked on several open-source projects including
Disruptor, Simple Binary Encoding, and Aeron. I co-founded Adaptive in 2011.

Adaptive

We are a software consultancy specialised in designing and building real-time trading
systems for financial and commodity markets with offices in London, Barcelona and
Montreal.

Adaptive

25th Floor,
Salesforce Tower
110 Bishopsgate
London EC2N 4AY

+44 203 725 6000
info@weareadaptive.com
weareadaptive.com

