
Matt Barrett

Bhavesh Desai

Matt Barrett
Co-founder @ Adaptive

Bhavesh Desai
Head of UI @ Adaptive

Real-Time Streaming UIs

The real-time trading experts.

We design, build, and operate business-led
technology solutions utilising cutting edge
techniques.

Who are we?

Market forces and real-time trading technology are

fundamentally changing the way business is conducted

within financial services, capital and commodity markets.

Market forces and real-time trading technology are

fundamentally changing the way business is conducted

within financial services, capital and commodity markets

everywhere!

Streams and UIs

Embracing streams and managing complexity

Streams, time and the business domain

Performance

Real-time streaming web applications

Questions

Demo

https://github.com/AdaptiveConsulting/ReactiveTraderCloud
https://web-demo.adaptivecluster.com/

High Level Architecture

Real-time streaming
web apps

The Early, Difficult Days

The RIA Era

Today’s UI Frameworks

Angular 2 + React

20% 80%

Complexity In Trading Applications

● Lots of different things traded..

○ FX, Equities, Fixed Income, Physical Commodities (Vanilla pods!), Energy, etc.

● Packaged in different ways..

○ Spot, Forwards, Swaps, Options..

● Traded in different ways..

○ Request for Quote, Indication of Interest, Order, Executable Streaming Price

● Large amounts of information on screen

● Streaming data

● Time sensitive

● Performance issues have large, possibly existential business impact

The Cliff of Complexity

Embracing streams and
managing complexity

● State spread across multiple locations. Hard to keep in sync

● Two-way data flow can be confusing

● Hard to track the cause and effect of events

Avoid Client Side MVC

Event-sourcing on the client

Redux

● One place to store state

● Data flows in one direction

● Widely used

● Simple programming model

Start with a Template

Model the Applications State

Model Actions that can change our state

Process of calling into the outside world

Action -> Action(s)

Middleware

● Where we handle asynchronicity (Network requests or Timers)

● Redux-observable (Netflix) allows us to write middleware using RxJS

Process of calling into the outside world

Action -> Action(s)

Middleware

● Where we handle asynchronicity (Network requests or Timers)

● Redux-observable (Netflix) allows us to write middleware using RxJS

Reactive Extensions Library for Javascript

RxJS

● Library for managing and manipulating streams

● Easily compose asynchronous or callback code

● Well suited to the financial domain as most services are streams

● All through Reactive Trader Cloud

Streams, time and the
business domain

Reactive Trader Architecture

Price Streams

Price movement indicator

Stale price

Processing Price Streams

Reactive Trader Architecture

High Level Architecture

Demo

https://github.com/AdaptiveConsulting/ReactiveTraderCloud
https://web-demo.adaptivecluster.com/

Detecting the Status of Services

Streams of Streams

Reactive Trader Architecture

Backpressure

Consumer can not keep up with a producer due to high speed data transmission

Lossy (Immutable Updates, Prices) or Loss-less (Mutable Updates-Deltas, Trade Blotters)

Backpressure

Loss-less streams

RxJS

● Use Typescript.

● RxJS has a high learning curve.

● Do not use Rx if your middleware is simple.

● The Rx paradigm can be used for front-end and back-end developers to communicate

● Use Use RxJS TSLint plugin to avoid common pitfalls

● Try not to mix Pull and Push models. “Everything is a stream”

● Rx is useless if no one can read your code.

Reactive Trader Architecture

Performance

Types of Performance

● Critical Rendering Path (Async/Defer tags, Lazy loading, minification)

● JS execution (Object pooling, Data processing, micro-optimization, algorithms and data

structures)

● Network Performance

● Rendering performance

● Memory management

Scheduling work with Rx

Rx Scheduler When will the work occur Plain JS equivalent Can block the
event loop

queue Synchronously Synchronous code yes

asap Fast as possible async (when the
current stack clears)

Promise.resolve().then() yes

async When the event loop is free setTimeout(.., 0) no

animationFrame Before rendering the next frame requestAnimationFrame() no

Gerard Sans — Bending time with Schedulers and RxJS 5: https://www.youtube.com/watch?v=AL8dG1tuH40

Memory Leaks

● Unbounded Buffers in Rx

● Not Unsubscribing in Rx

● Detached DOM nodes

● Lingering event handlers

GC

Sawtooth not returning to baseline

Market forces and real-time trading technology are

fundamentally changing the way business is conducted

within financial services, capital and commodity markets

everywhere!

Real-time technology enables you to change the way you

build applications, to enable real time experiences for

your users that are hugely compelling, and frankly, just..

..cooler.

https://docs.google.com/file/d/1zNyTQPC00J8nIBA9jG4O1slNkKM25VAf/preview

